Building The Foundations For Data Driven Businesses at 5xData

Data Engineering Podcast - Un pódcast de Tobias Macey - Domingos

Categorías:

Summary Every business aims to be data driven, but not all of them succeed in that effort. In order to be able to truly derive insights from the data that an organization collects, there are certain foundational capabilities that they need to have capacity for. In order to help more businesses build those foundations, Tarush Aggarwal created 5xData, offering collaborative workshops to assist in setting up the technical and organizational systems that are necessary to succeed. In this episode he shares his thoughts on the core elements that are necessary for every business to be data driven, how he is helping companies incorporate those capabilities into their structure, and the ongoing support that he is providing through a network of mastermind groups. This is a great conversation about the initial steps that every group should be thinking of as they start down the road to making data informed decisions. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Once you sign up and create an alert in Datafold for your company data, they will send you a cool water flask. RudderStack’s smart customer data pipeline is warehouse-first. It builds your customer data warehouse and your identity graph on your data warehouse, with support for Snowflake, Google BigQuery, Amazon Redshift, and more. Their SDKs and plugins make event streaming easy, and their integrations with cloud applications like Salesforce and ZenDesk help you go beyond event streaming. With RudderStack you can use all of your customer data to answer more difficult questions and then send those insights to your whole customer data stack. Sign up free at dataengineeringpodcast.com/rudder today. Your host is Tobias Macey and today I’m interviewing Tarush Aggarwal about his mission at 5xData to teach companies how to build solid foundations for their data capabilities Interview Introduction How did you get involved in the area of data management? Can you start by giving an overview of what you are building at 5xData and the story behind it? impact of industry on challenges in becoming data driven profile of companies that you are trying to work with common mistakes when designing data platform misconceptions that the business has around how to invest in data challenges in attracting/interviewing/hiring data talent What are the core components that you have standardized on for building the foundational layers of the data platform? providing context and training to business users in order to allow them to self-serve the answers to their questions tooling/interfaces needed to allow them to ask and investigate questions most high impact areas for data engineers to focus on in the initial stages of implementing the data platform how to identify and prioritize areas of effort useful structure of data team at different stages of maturity What are the most interesting, unexpected, or challenging lessons that you have learned while building out the business and team of 5xData? What do you have planned for the future of the business? What are the industry trends or specific technologies that you are keeping a close watch on? Contact Info LinkedIn @tarush on Twitter Parting Question From your perspective, what is the biggest gap in the tooling or technology for data management today? Closing Announcements Thank you for listening! Don’t forget to check out our other show, Podcast.__init__ to learn about the Python language, its community, and the innovative ways it is being used. Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes. If you’ve learned something or tried out a project from the show then tell us about it! Email [email protected]) with your story. To help other people find the show please leave a review on iTunes and tell your friends and co-workers Join the community in the new Zulip chat workspace at dataengineeringpodcast.com/chat Links 5xData Looker Podcast Episode Snowflake Podcast Episode Fivetran Podcast Episode DBT Podcast Episode The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA Support Data Engineering Podcast

Visit the podcast's native language site