[MINI] One Shot Learning

Data Skeptic - Un pódcast de Kyle Polich

Categorías:

One Shot Learning is the class of machine learning procedures that focuses learning something from a small number of examples.  This is in contrast to "traditional" machine learning which typically requires a very large training set to build a reasonable model. In this episode, Kyle presents a coded message to Linhda who is able to recognize that many of these new symbols created are likely to be the same symbol, despite having extremely few examples of each.  Why can the human brain recognize a new symbol with relative ease while most machine learning algorithms require large training data?  We discuss some of the reasons why and approaches to One Shot Learning.

Visit the podcast's native language site