Best AI papers explained
Un pódcast de Enoch H. Kang
550 Episodo
-
Self-Evolving Curriculum for LLM Reasoning
Publicado: 25/5/2025 -
Online Decision-Focused Learning in Dynamic Environments
Publicado: 25/5/2025 -
FisherSFT: Data-Efficient Supervised Fine-Tuning of Language Models Using Information Gain
Publicado: 25/5/2025 -
Reward Shaping from Confounded Offline Data
Publicado: 25/5/2025 -
Trajectory Bellman Residual Minimization: A Simple Value-Based Method for LLM Reasoning
Publicado: 25/5/2025 -
Understanding Best-of-N Language Model Alignment
Publicado: 25/5/2025 -
Maximizing Acquisition Functions for Bayesian Optimization - and its relation to Gradient Descent
Publicado: 24/5/2025 -
Bayesian Prompt Ensembles: Model Uncertainty Estimation for Black-Box Large Language Models
Publicado: 24/5/2025 -
Prompting Strategies for Enabling Large Language Models to Infer Causation from Correlation
Publicado: 24/5/2025 -
The Parallel Knowledge Gradient Method for Batch Bayesian Optimization
Publicado: 24/5/2025 -
FunBO: Discovering Acquisition Functions for Bayesian Optimization with FunSearch
Publicado: 24/5/2025 -
Automated Social Science: A Structural Causal Model-Based Approach
Publicado: 24/5/2025 -
Causal Interpretation of Transformer Self-Attention
Publicado: 24/5/2025 -
A Causal World Model Underlying Next Token Prediction: Exploring GPT in a Controlled Environment
Publicado: 24/5/2025 -
Trace is the Next AutoDiff: Generative Optimization with Rich Feedback, Execution Traces, and LLMs
Publicado: 24/5/2025 -
Adaptive Inference-Time Compute: LLMs Can Predict if They Can Do Better, Even Mid-Generation
Publicado: 24/5/2025 -
Prompts from Reinforcement Learning (PRL)
Publicado: 24/5/2025 -
Logits are All We Need to Adapt Closed Models
Publicado: 24/5/2025 -
Large Language Models Are (Bayesian) Latent Variable Models: Explaining and Finding Good Demonstrations for In-Context Learning
Publicado: 23/5/2025 -
Inference-Time Intervention: Eliciting Truthful Answers from a Language Model
Publicado: 23/5/2025
Cut through the noise. We curate and break down the most important AI papers so you don’t have to.
