Data Science at Home

Un pódcast de Francesco Gadaleta

Categorías:

264 Episodo

  1. What if I train a neural network with random data? (with Stanisław Jastrzębski) (Ep. 87)

    Publicado: 12/11/2019
  2. Deeplearning is easier when it is illustrated (with Jon Krohn) (Ep. 86)

    Publicado: 5/11/2019
  3. More powerful deep learning with transformers (Ep. 84)

    Publicado: 27/10/2019
  4. What is wrong with reinforcement learning? (Ep. 82)

    Publicado: 15/10/2019
  5. Have you met Shannon? Conversation with Jimmy Soni and Rob Goodman about one of the greatest minds in history (Ep. 81)

    Publicado: 10/10/2019
  6. Attacking machine learning for fun and profit (with the authors of SecML Ep. 80)

    Publicado: 1/10/2019
  7. [RB] How to scale AI in your organisation (Ep. 79)

    Publicado: 26/9/2019
  8. Replicating GPT-2, the most dangerous NLP model (with Aaron Gokaslan) (Ep. 78)

    Publicado: 23/9/2019
  9. How to generate very large images with GANs (Ep. 76)

    Publicado: 6/9/2019
  10. How to cluster tabular data with Markov Clustering (Ep. 73)

    Publicado: 20/8/2019
  11. Waterfall or Agile? The best methodology for AI and machine learning (Ep. 72)

    Publicado: 14/8/2019
  12. Training neural networks faster without GPU (Ep. 71)

    Publicado: 6/8/2019
  13. Validate neural networks without data with Dr. Charles Martin (Ep. 70)

    Publicado: 23/7/2019
  14. Complex video analysis made easy with Videoflow (Ep. 69)

    Publicado: 16/7/2019
  15. Episode 68: AI and the future of banking with Chris Skinner [RB]

    Publicado: 9/7/2019
  16. Episode 67: Classic Computer Science Problems in Python

    Publicado: 2/7/2019
  17. Episode 66: More intelligent machines with self-supervised learning

    Publicado: 25/6/2019
  18. Episode 65: AI knows biology. Or does it?

    Publicado: 23/6/2019
  19. Episode 64: Get the best shot at NLP sentiment analysis

    Publicado: 14/6/2019
  20. Episode 63: Financial time series and machine learning

    Publicado: 4/6/2019

10 / 14

Artificial Intelligence, algorithms and tech tales that are shaping the world. Hype not included.

Visit the podcast's native language site