Best AI papers explained
Un pódcast de Enoch H. Kang
494 Episodo
-
Demystifying Reinforcement Learning in Agentic Reasoning
Publicado: 19/10/2025 -
Emergent coordination in multi-agent language models
Publicado: 19/10/2025 -
Learning-to-measure: in-context active feature acquisition
Publicado: 19/10/2025 -
Andrej Karpathy's insights: AGI, Intelligence, and Evolution
Publicado: 19/10/2025 -
Front-Loading Reasoning: The Synergy between Pretraining and Post-Training Data
Publicado: 18/10/2025 -
Representation-Based Exploration for Language Models: From Test-Time to Post-Training
Publicado: 18/10/2025 -
The attacker moves second: stronger adaptive attacks bypass defenses against LLM jail- Breaks and prompt injections
Publicado: 18/10/2025 -
When can in-context learning generalize out of task distribution?
Publicado: 16/10/2025 -
The Art of Scaling Reinforcement Learning Compute for LLMs
Publicado: 16/10/2025 -
A small number of samples can poison LLMs of any size
Publicado: 16/10/2025 -
Dual Goal Representations
Publicado: 14/10/2025 -
Welcome to the Era of Experience
Publicado: 14/10/2025 -
Value Flows: Flow-Based Distributional Reinforcement Learning
Publicado: 14/10/2025 -
Self-Adapting Language Models
Publicado: 12/10/2025 -
The Markovian Thinker
Publicado: 12/10/2025 -
Moloch’s Bargain: emergent misalignment when LLMs compete for audiences
Publicado: 12/10/2025 -
Transformer Predictor Dynamics and Task Diversity
Publicado: 11/10/2025 -
Base models know how to reason, thinking models learn when
Publicado: 11/10/2025 -
Spectrum tuning: Post-training for distributional coverage and in-context steerability
Publicado: 11/10/2025 -
Understanding Prompt Tuning and In-Context Learning via Meta-Learning
Publicado: 11/10/2025
Cut through the noise. We curate and break down the most important AI papers so you don’t have to.