Data Engineering Podcast

Un pódcast de Tobias Macey - Domingos

Domingos

Categorías:

419 Episodo

  1. Building And Managing Data Teams And Data Platforms In Large Organizations With Ashish Mrig

    Publicado: 23/1/2022
  2. Automated Data Quality Management Through Machine Learning With Anomalo

    Publicado: 15/1/2022
  3. An Introduction To Data And Analytics Engineering For Non-Programmers

    Publicado: 15/1/2022
  4. Open Source Reverse ETL For Everyone With Grouparoo

    Publicado: 8/1/2022
  5. Data Observability Out Of The Box With Metaplane

    Publicado: 8/1/2022
  6. Creating Shared Context For Your Data Warehouse With A Controlled Vocabulary

    Publicado: 2/1/2022
  7. A Reflection On The Data Ecosystem For The Year 2021

    Publicado: 2/1/2022
  8. Revisiting The Technical And Social Benefits Of The Data Mesh

    Publicado: 27/12/2021
  9. Exploring The Evolving Role Of Data Engineers

    Publicado: 27/12/2021
  10. Fast And Flexible Headless Data Analytics With Cube.JS

    Publicado: 21/12/2021
  11. Building A System Of Record For Your Organization's Data Ecosystem At Metaphor

    Publicado: 20/12/2021
  12. Building Auditable Spark Pipelines At Capital One

    Publicado: 13/12/2021
  13. Deliver Personal Experiences In Your Applications With The Unomi Open Source Customer Data Platform

    Publicado: 12/12/2021
  14. Data Driven Hiring For Data Professionals With Alooba

    Publicado: 4/12/2021
  15. Experimentation and A/B Testing For Modern Data Teams With Eppo

    Publicado: 4/12/2021
  16. Creating A Unified Experience For The Modern Data Stack At Mozart Data

    Publicado: 27/11/2021
  17. Doing DataOps For External Data Sources As A Service at Demyst

    Publicado: 27/11/2021
  18. Exploring Processing Patterns For Streaming Data Integration In Your Data Lake

    Publicado: 20/11/2021
  19. Laying The Foundation Of Your Data Platform For The Era Of Big Complexity With Dagster

    Publicado: 20/11/2021
  20. Data Quality Starts At The Source

    Publicado: 14/11/2021

9 / 21

This show goes behind the scenes for the tools, techniques, and difficulties associated with the discipline of data engineering. Databases, workflows, automation, and data manipulation are just some of the topics that you will find here.

Visit the podcast's native language site